# What methods did the Old Babylonian society use for solving equations?

## How did Babylonians solve systems of equations?

As well as arithmetical calculations, Babylonian mathematicians also developed algebraic methods of solving equations. Once again, these were based on pre-calculated tables. and they found square roots efficiently using division and averaging.

## What method did the Babylonians use?

The iterative method is called the Babylonian method for finding square roots, or sometimes Hero’s method. It was known to the ancient Babylonians (1500 BC) and Greeks (100 AD) long before Newton invented his general procedure.

## What methods were used by the Babylonians to solve quadratic equations?

A = x2 + 7x

The Babylonians would solve this via a series of steps that illustrate the close connection between algebra and geometry. The process is known as ‘completing the square‘. To make an equation of the type x2 + bx manageable, you first draw it as geometrical shapes. x2 is just a square of side x.

## How did the Babylonians use math?

The Babylonians divided the day into 24 hours, each hour into 60 minutes, each minute into 60 seconds. This form of counting has survived for 4000 years.

## What are the 3 methods of system of equations?

There are three ways to solve systems of linear equations in two variables:

• graphing.
• substitution method.
• elimination method.

## What method is used to solve system equations?

There are three methods used to solve systems of equations: graphing, substitution, and elimination. To solve a system by graphing, you simply graph the given equations and find the point(s) where they all intersect. The coordinate of this point will give you the values of the variables that you are solving for.

## What is the Babylonian method of multiplication?

The Babylonian quarter square multiplication algorithm is defined as the method used by Babylonian Scribes to multiply two or more numbers from a table of quarter squares, half squares, or whole squares, as a broad definition.

## Which method of numeration was used by the ancient Babylonians?

sexagesimal

The Babylonian number system uses base 60 (sexagesimal) instead of 10. Their notation is not terribly hard to decipher, partly because they use a positional notation system, just like we do.

## How did the early Babylonians solve the area of a circle?

The ancient Babylonians calculated the area of a circle by taking 3 times the square of its radius, which gave a value of pi = 3. One Babylonian tablet (ca. 1900–1680 BC) indicates a value of 3.125 for π, which is a closer approximation.

## How did Babylonians use Pythagorean Theorem?

An ancient clay tablet shows that the Babylonians used Pythagorean triples to measure accurate right angles for surveying land.

## What kind of mathematical operations were used in the Babylonian number system?

The Babylonians used a system of sexagesimal fractions similar to our decimal fractions. For example if we write 0. 125 then this is 1 10 + 2 100 + 5 1000 = 1 8 \large\frac{1}{10}\normalsize + \large\frac{2}{100}\normalsize + \large\frac{5}{1000}\normalsize = \large\frac{1}{8} 101+1002+10005=81.

## What two mathematical innovations did the Babylonians use?

By 400 B.C. Babylonian astronomers had worked out a coordinate system using the ecliptic, the region of the sky the sun and planets move through, Ossendrijver says. They even invented the use of degrees as 360 fractions of a circle based on their sexagesimal, or base 60, counting system.